Maurer–Cartan Moduli and Theorems of Riemann–Hilbert Type

نویسندگان

چکیده

Abstract We study Maurer–Cartan moduli spaces of dg algebras and associated categories show that, while not quasi-isomorphism invariants, they are invariants strong homotopy type, a natural notion that has been studied before. prove, in several different contexts, Schlessinger–Stasheff type theorems comparing the notions gauge equivalence for elements as well their categorified versions. As an application, we re-prove generalize Block–Smith’s higher Riemann–Hilbert correspondence, develop its analogue simplicial complexes topological spaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

idealization and theorems of d.d anderson (ایده ال سازی و قضایای اندرسون )

از یک مدول دلخواه یک حلقه ی جابه جایی می سازیم. و به جای بررسی زیرمدول ها ایده ال های این حلقه را بررسی می کنیم. نشان می دهیم خواص مهمی چون حذفی بودن ضربی بودن معکوس پذیری و ...منتقل میشود.

15 صفحه اول

: metadiscourse in introduction sections of applied linguistics and physics research articles: exploring variation in frequency and type

abstract in written mode of language, metadiscourse markers are used commonly to help writers in general and academic writers in particular to produce coherent and professional texts. the purpose of the present study was to compare introduction sections of applied linguistics and physics articles regarding their use of interactive and interactional metadiscourse markers based on the model pro...

15 صفحه اول

FUZZY REFLEXIVITY OF FELBIN'S TYPE FUZZY NORMED LINEAR SPACES AND FIXED POINT THEOREMS IN SUCH SPACES

An idea of fuzzy reexivity of Felbin's type fuzzy normed linear spaces is introduced and its properties are studied. Concept of fuzzy uniform normal structure is given and using the geometric properties of this concept xed point theorems are proved in fuzzy normed linear spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Categorical Structures

سال: 2021

ISSN: ['1572-9095', '0927-2852']

DOI: https://doi.org/10.1007/s10485-021-09631-3